
A Fine Way to Kiss the Hyperellipsoid

Kurt A. Motekew

November 28, 2022

Abstract

A closed form solution determining the intersection of a pointing vec-

tor from a reference point to an arbitrarily oriented hyperellipsoid is pre-

sented. The tangent to the hyperellipsoid from a line originating at the

reference point, in the direction of the pointing vector, is also derived.

The solutions are obtained by transforming the hyperellipsoid into a unit

n-sphere, followed by a second transformation converting the geometry to

a unit circle.

Representation of a hyperellipsoid as a unit n-sphere subject to an

affine transformation is first illustrated. Next, the process of mapping the

three dimensional intersection and tangent point problems to two dimen-

sions is described. This method is then extended to n-dimensional space

through the generation of an orthonormal transformation via the tensor

calculus definition of the cross product. The two dimensional solutions

are derived, concluding with justifying why the intersection and tangent

points remain valid through the application of an affine transformation.

1 Introduction

The quadratic form
ztM−1z = 1

represents an n-dimensional hyperellipsoid centered at the origin of a Cartesian
reference frame when M is a real symmetric positive definite matrix and z is
a vector indicating a position on the corresponding surface. M has n real,
not necessarily distinct, nonzero eigenvalues λi and n corresponding distinct
orthogonal eigenvectors vi such that

M = VΛVt

where

Λ =

λ1

λ2

. . .

λn

1

and
V =

[

v1 v2 · · · vn

]

Normalizing the eigenvectors

ûi =
vi

||vi||
and denoting the corresponding orthonormal transformation matrix as

U =
[

û1 û2 · · · ûn

]

the diagonal matrix Λ can be viewed as a hyperellipsoid with principal axes
aligned with the Cartesian reference frame subject to a rigid rotation (vs. a
reference frame transformation) resulting in M:

M = UΛUt

Additionally, the hyperellipsoid Λ is the result of applying an affine trans-
formation to the identity matrix

Λ = Λ
1

2 IΛ
1

2

Consequently, an arbitrarily oriented hyperellipsoid can be represented as a
unit n-sphere subject to a diagonal scaling matrix followed by an orthonormal
transformation:

T = UΛ
1

2

M = TITt

Lanczos [5, Ch. 2] elegantly develops the relationship between hyperellipsoids
and symmetric matrices, deriving eigenvalues as the squares of semiaxes lengths
and eigenvectors as the principal axes. The concept of the hyperellipsoid as a
linear transformation of the unit n-sphere is thoroughly explored. Gura and Ger-
sten [4] derive analytic expressions related to the probability of containment of
a random variable through the use of affine transformations of an n-dimensional
normal density function.

2 Ellipsoid to Unit Sphere

A transformation is applied to Cartesian coordinates, mapping the ellipsoid to
a unit sphere. In matrix form, it can be constructed by the combination of
a reference frame transformation (orthonormal matrix) aligning the ellipsoid
principal axes with that of a new Cartesian reference frame, and a diagonal
matrix scaling the ellipsoid to a unit sphere1. If the ellipsoid semiaxes, as
vectors ai with lengths ai and unit principal axes âi,

a1 = a1â1

a2 = a2â2

a3 = a3â3
1If the ellipsoid is not located at the origin of the reference frame, then a simple translation

would first be applied.

2

are known from the geometry of the problem, the transformation matrix result-
ing in a unit sphere is

Ts
e =

1
a1

0 0

0 1
a2

0

0 0 1
a3

ât1

ât2

ât3

(1)

If the ellipsoid is defined as a symmetric positive definite matrix, eigendecom-
position will yield the eigenvalues λi and corresponding eigenvectors (in unit
vector form) âi such that

Ts
e =

1√
λ1

0 0

0 1√
λ2

0

0 0 1√
λ3

ât1

ât2

ât3

(2)

given the semiaxes lengths are

a1 =
√

λ1

a2 =
√

λ2

a3 =
√

λ3

3 Unit Sphere to Circle

The location of the reference point (r) relative to the origin (o), w.r.t. the
Cartesian reference frame in which the centered ellipsoid is originally represented
(e), is ze

r/o. The pointing vector originating from the reference point is ze
p/r.

These vectors can be transformed to the reference frame in which the ellipsoid
is a unit sphere using the result of §2:

zsr/o = Ts
ez

e
r/o

zsp/r = Ts
ez

e
p/r

A second transformation simplifies the geometry to that of a circle. A plane
cutting through the unit sphere preserving all the information needed to de-
termine intersection and tangent points is defined by zs

r/o and zs
p/r. The cross

product of these two vectors generates the third axis of the basis vectors defining

3

the transformation of the unit sphere into a unit circle,

î =
zs
r/o

∣

∣

∣

∣

∣

∣
zs
r/o

∣

∣

∣

∣

∣

∣

(3)

k̂ =
î× zs

p/r
∣

∣

∣

∣

∣

∣
zs
p/r

∣

∣

∣

∣

∣

∣

(4)

ĵ = k̂× î (5)

such that,

Tc
s =

ît

ĵt

k̂t

(6)

Take note of the general process—the reference point location forms the first
basis vector and is then used with the pointing vector to find the normal to the
plane in which the unit circle of interest is defined. That third basis vector is
then used with the first to determine the second basis vector. The same process
is followed in higher dimensions except n−2 mutually orthogonal n-dimensional
vectors, each normal to the plane containing the unit circle being isolated, must
be determined before going back and “squaring up” the system that will be used
to form an orthonormal transformation matrix.

Application of Tc
s brings all relevant information into the first two dimen-

sions.

zcr/o = Tc
sz

s
r/o

zcp/r = Tc
sz

s
p/r

The two dimensional reference point and pointing vectors will be denoted as
r and p, respectively. The third component of the three dimensional vectors
becomes zero after the transformation.

zcr/o = [rt 0]
t

zcp/r = [pt 0]
t

4 Extension to Arbitrary Dimension

Transformation of the hyperellipsoid to a unit circle parallels that of the three
dimensional case. The conversion to a unit n-sphere is identical. Given the
semiaxis definition,

ai = aiâi

4

the transformation to an n-sphere is an extension of Eqn. (1)

Ts
e =

1
a1

1
a2

. . .
1
an

ât1

ât2
...
âtn

(7)

Likewise, eigendecomposition of an n-dimensional covariance naturally extends
beyond the three dimensions of Eqn. (2):

Ts
e =

1√
λ1

1√
λ2

. . .
1√
λn

ât1

ât2
...

âtn

(8)

The n-dimensional Cartesian reference and pointing vectors can now be trans-
formed to a reference frame in which the hyperellipsoid becomes an n-sphere.

zsr/o = Ts
ez

e
r/o

zsp/r = Ts
ez

e
p/r

Isolating the two dimensional unit circle is accomplished through the use of
the generalized cross product definition to create the orthonormal transforma-
tion Tc

s. This is most easily defined via tensor notation. The three dimensional,

W i = εijkUjVk

and n-dimensional cross product definitions [3, pp. 150–157],

V i = εij1...jn−1Uj1 . . . Ujn−1

are simplified in Cartesian coordinates by the replacement of the Levi-Civita
symbol εijk with the permutation symbol eijk and the equivalence of contravari-
ant (U i) and covariant (Ui) vector components. Retaining the Einstein summa-
tion notation for convenience,

W i = eijkUjVk

V i = eij1...jn−1Uj1 . . . Ujn−1
(9)

The n-dimensional cross product takes (n − 1) n-dimensional vectors, pro-
ducing an nth vector that is orthogonal to each of the input vectors. This
presents a challenge when attempting to construct Tc

s given only the two ar-
bitrarily oriented vectors zs

r/o and zs
p/r are provided. These two vectors are

5

used to generate (n−2) mutually orthogonal n-dimensional vectors defining the
“group normal” to the plane they span. Having fixed the geometry, one of the
original vectors is selected to be a basis vector in the new reference frame while
the other is sacrificed to square up the system.

To begin the process, (n − 3) orthogonal vectors must be chosen that are
linearly independent of zs

r/o and zs
p/r. A simple method is to choose Cartesian

basis vectors ûi for the n-dimensional system that are aligned with the axes of
the reference frame in use. Begin by selecting the first candidate

û1 = [1 0 0 · · · 0]t

If û1 is linearly independent of zs
r/o and zs

p/r, then it becomes Ui3 of Eqn. (9).

If û1 is within the span of zs
r/o and zs

p/r, then examine the next basis vector,

û2 = [0 1 0 · · · 0]t

Continue this process until a linearly independent basis vector is determined.
Repeat the process, using the next available Cartesian basis vector ûk, until the
(n − 1)th orthonormal basis vector has been found (Algorithm 1). Given the
existence of n Cartesian basis vectors û1, û2, . . . , ûn, and two initial vectors,

Ui1 = zsr/o

Ui2 = zsp/r

(n − 3) orthonormal vectors Ui3 · · ·Uin−1
can be determined such that Uij are

linearly independent.
The cross product of zs

r/o, z
s
p/r, and Uj3 . . . Ujn−1

, in that order, generates

an nth vector orthogonal to both zs
r/o and zs

p/r. This vector replaces Uj3 . The
cross product operation is performed again, resulting in a replacement to Uj4 .
This process is repeated until Ujn−1

replaces itself. The cross product is carried
out once more, generating Ujn . This completes the group of vectors normal to
the plane formed by zs

r/o and zs
p/r.

At this point, n vectors exist. Uj3 . . . Ujn are orthogonal to zs
r/o and zs

p/r.
However, zs

r/o is most likely not orthogonal to zs
p/r. The final step of squaring

up the system to produce an orthonormal transformation parallels the process
of §3. To review, the reference point location was used to form the first basis
vector; Eqn. (3). The cross product of this first basis vector and the pointing
vector resulted in the third basis vector; Eqn. (4). This basis vector is normal
to the plane in which the unit circle of interest is defined—it essentially defines
the geometry. The third basis vector was then crossed with the first to produce
the second; Eqn. (5).

In n-dimensions, instead of generating a single basis vector orthogonal to the
plane isolating the unit circle containing zs

r/o and zs
p/r, (n− 2) are generated2.

Uj3 . . . Ujn must be crossed against the first basis vector zs
r/o (Uj1) to form the

2An n-dimensional plane has (n− 2) linearly independent (noncollinear) normals.

6

Algorithm 1 Given two n-dimensional vectors, build (n− 3) orthonormal vec-
tors that are linearly independent of the inputs, such that the entire set of (n−1)
vectors is suitable for the cross product operation.

1: procedure BuildCross(z1, z2)
2: n = length (zi)
3: δi = 2
4: for i = 3 : (n− 1) do
5: done = false
6: while done 6= true do

7: ûi [1 : n] = 0
8: ûi [i− δi] = 1
9: if rank (z1, z2, ûi) == 3 then

10: done = true
11: else

12: δi = δi − 1
13: end if

14: end while

15: end for

16: return û3, û4, . . . , ûn−1

17: end procedure

second (Algorithm 2). The n basis vectors can now be normalized and set as
row vectors forming,

Tc
s =

ût
1

ût
2
...
ût
n

(10)

with

ui = Uji

ûi =
ui

||ui||

As with the three dimensional case, Tc
s isolates all relevant information to be in

two dimensions.

zcr/o = Tc
sz

s
r/o

zcp/r = Tc
sz

s
p/r

Once again, only the first two components of the reference and pointing vectors
are nonzero,

zcr/o = [rt 0 · · · 0]t

zcp/r = [pt 0 · · · 0]t

7

where

r =

[

r1
r2

]

(11)

p =

[

p1
p2

]

(12)

In practice, it is best to normalize each Uij as they are assigned since the
components of higher dimensional cross products can begin to grow quickly
in magnitude. Higher dimensional cross products generated through a direct
implementation of Eqn. (9) become less numerically stable as the range in mag-
nitudes of the vector components grows. The orthogonality of the resulting cross
product begins to suffer. Appendix A describes the use of full QR decomposi-
tion as a stable and efficient method of forming the set of basis vectors normal
to the span of the position and pointing vectors.

Algorithm 2 Given two n-dimensional vectors, determine an orthonormal
transformation from the current reference frame to one in which the first basis
vector of the new frame is aligned with the first input vector, and the second ba-
sis vector is within the span (in the plane defined by) the input vectors. Note,
for even dimensions, the transformation will be left handed (not orientation
preserving). The first two rows can be swapped to restore right handedness if
necessary.

1: procedure NDimTo2D(z1, z2)
2: n = length (zi)
3: û1 = z1

||z1||
4: ẑ2 = z2

||z2||
5: û3, û4, . . . , ûn−1 = BuildCross (û1, ẑ2,)
6: for i = 3 : (n− 1) do
7: ui = Cross (û1, ẑ2, û3, û4, . . . , ûn−1)
8: ûi =

ui

||ui||
9: end for

10: un = Cross (û1, ẑ2, û3, û4, . . . , ûn−1)
11: ûn = un

||ui||
12: u2 = Cross (û3, û4, . . . , ûn, û1) ⊲ ĵ = k̂× î (Eqn. 4)
13: û2 = u2

||u2||
14: T = [û1, û2, . . . , ûn]

t

15: return T
16: end procedure

5 Intersecting the Circle

Given a reference point r and pointing vector p from Eqns. (11) and (12), the
intersection ρ shown in Figure 1 is determined by finding the roots of a quadratic

8

Figure 1: Unit Circle Intersection Geometry

equation. Consider
ρ = r+ sp̂

where
p̂ =

p

||p||
Given the intersection point ρ exists on the unit circle,

||r+ sp̂|| = 1 (13)

Equation (13) consists of a single unknown—the length of the vector from the
reference point to the unit circle; s. Breaking each vector into components

(rx + sp̂x)
2
+ (ry + sp̂y)

2
= 1

with

r =

[

rx
ry

]

p̂ =

[

p̂x
p̂y

]

followed by expanding and collecting terms about powers of s,

(

p̂2x + p̂2y
)

s2 + 2 (rxp̂x + ryp̂y) s+ r2x + r2y − 1 = 0 (14)

as2 + bs+ c = 0

9

allows for s to be resolved through the use of the quadratic formula.

s =
−b±

√
b2 − 4ac

2a
(15)

Substituting the coefficients of Eqn. (14) into (15) and simplifying, the roots
of (14) become

s =
−β ±

√

β2 − αγ

α
(16)

with coefficients:

α = p̂2x + p̂2y

β = rxp̂x + ry p̂y

γ = r2x + r2y − 1

Multiple tests must be performed to determine the intersection. First, before
solving for s, compute the discriminant

d = β2 − αγ

rewriting Eqn. (16) as

s =
−β ±

√
d

α
(17)

If d < 0, there is no real solution and the pointing vector misses the unit circle.
Under these conditions, computing the tangent point of §6 is often of use.

Three conditions can occur if d >= 0. First, the reference point could
be within the unit circle (||r|| < ||ρ||). Adding

√
d to −β in the numerator

of Eqn. (17) will determine the proper value of s. If ||r|| = ||ρ||, then the
intersection is simply the reference point location (s = 0).

If d > 0 and ||r|| > ||ρ||, then the reference point is outside the unit circle
and the line defined by the pointing vector p intersects it. However, if the
pointing vector is pointing away from the circle, then the solution will shoot
backwards. This causes the pointing vector, in the direction it points, to miss
the circle. If

||r̂+ p̂|| < 1

with
r̂ =

r

||r|| (18)

then the intersection exists (review Figure 1) because the sum of the two unit
vectors is within the unit circle—the pointing vector is directed inward. Under
these conditions, subtract

√
d from −β in Eqn. (17). Otherwise, there is no

intersection and the tangent point can instead be computed if appropriate.

10

Figure 2: Unit Circle Tangent Geometry

6 Tangent to the Unit Circle

Deriving the tangent points ρ to a unit circle given an external reference point
r, as illustrated in Figure 2, is trivial compared to that of an ellipse. A pointing
vector p is required only to determine which tangent point should be chosen,
as there will always be two unless ||r|| ≤ ||ρ||. As with §5, the reference and
pointing vectors are the same r and p from Eqns. (11) and (12).

The magnitude of the tangent point vector ρ is the radius of the unit cir-
cle. Therefore, taking advantage of the orthogonality between ρ and s, the
magnitude of s can be computed

ρ = 1

r2 = s2 + ρ2

s =
√

r2 − 1

denoting

r = ||r||
ρ = ||ρ||

The tangent point can be constructed as a linear combination of the reference
point r and the normal to this vector r⊥. Convenient unit basis vectors are r̂,
Eqn. (18), and

r̂⊥ =

[

0 −1
1 0

]

r̂

11

where the permutation matrix is simply a 90◦ vector rotation (direct transforma-
tion) matrix in the counterclockwise direction. The tangent point ρ illustrated
by the solid line in Figure 2 is then

ρ = r̂ (r − s cosφ) + r̂⊥s sinφ

Substituting,

cosφ =
s

r

sinφ =
1

r

the two tangent points are

ρ =

(

r − s2

r

)

r̂± s

r
r̂⊥ (19)

Finally, if the pointing vector p and r̂⊥ are in the same direction, the second
term of Eqn. (19) is added. In other words, if ptr̂⊥ > 0, add the second term;
otherwise, subtract it.

If p and r are collinear (ptr̂⊥ = 0), then either tangent point can be chosen.
If the reference point is on the unit circle (r = ρ), then ρ = r. If the reference
point is within the unit circle (r < ρ), there is no tangent point. Depending on
the application, projecting the reference point to the circle such that ρ = r̂ may
be a useful result.

7 Return to Higher Dimensions

Once the two dimensional intersection or tangent point vector ρ of §5 or §6 is
computed, it needs to be transformed back to n-dimensional Cartesian space.
First, the transpose (equal to the inverse) of the orthonormal transformation
from the unit n-sphere to unit circle system (Eqns. (6) or (10)) must be applied.
Extending ρ to n-dimensions through padding with zeros,

zcρ/o = [ρt 0 · · · 0]t

allows for the n-sphere solution

Ts
c = (Tc

s)
t

zsρ/o = Ts
cz

c
ρ/o

Finally, the inverse (not transpose) of the Cartesian to unit n-sphere trans-
formation (Eqns. (1), (2), (7), or (8)) is applied to convert the vector to the
reference frame in which the hyperellipsoid is defined:

Te
s = (Ts

e)
−1

zeρ/o = Te
sz

s
ρ/o

12

8 Limitations

The reference and pointing vectors are used to build (n − 2) vectors that are
orthogonal to to their span, allowing for the problem to be isolated within a two
dimensional plane. This is not possible when these vectors are collinear. Under
such conditions, the tangent point is completely undefined as there is no way to
determine what direction should be taken. The intersection, however, becomes
trivial. Once the geometry is transformed to the unit n-sphere system, create
a unit vector from the position vector. The conversion of that unit vector back
to Cartesian space is the intersection.

zsr/o = Ts
ez

e
r/o

zeρ/o = Te
s

zs
r/o

∣

∣

∣

∣

∣

∣
zs
r/o

∣

∣

∣

∣

∣

∣

The primary challenge surrounds handling the intersection problem where,
from a numerical stability perspective, the position and pointing vectors are very
nearly collinear. For this case, an n-dimensional version of Eqn. (14) should be
used. After transformation of the hyperellipsoid to a unit n-sphere via Ts

e, solve
for the roots of Eqn. (16) as before where the coefficients are now accumulated
over all n dimensions:

α =

n
∑

i=1

p̂2i

β =
n
∑

i=1

rip̂i

γ =

n
∑

i=1

r2i − 1

9 Challenges of Validation Beyond 3D

Validation of implemented algorithms is trivial in three dimensions. An ellip-
soidal coordinate system can be chosen from which points on the surface of the
ellipsoid are naturally be defined. After conversion to Cartesian coordinates,
reference points can be chosen with the difference used to create pointing vec-
tors. The intersection algorithm is then applied and the results validated against
the original truth values.

The pointing vectors can then be used to generate tangent points. Validity is
verified by first forming the vector from the reference point zr to the suspected
tangent point zρ:

zs = zρ − zr

First, zs must be a linear combination of the reference zr and pointing zp̂ vectors
(the unit pointing vector notation p̂ is used for the subscript only to more easily

13

distinguish it from the ellipsoid point denoted via ρ). Second, it must be normal
to the surface normal at the tangent point, which is easily computed for an
ellipsoid as the cross product of the basis vectors in the tangent plane to the
ellipsoid—at the tangent point. . .

Validation is slightly more challenging in higher dimensions. First, it is
always helpful to ensure the tangent and intersection points are actually on the
surface of the hyperellipsoid. This is easily accomplished through the matrix
definition of a quadratic surface [5, p. 85],

ztρM
−1zρ = 1 (20)

where zρ is the n-dimensional vector representing the point on the hyperellipsoid
and M is once again the symmetric positive definite matrix of the hyperellipsoid.
Once it is verified that the point is on the surface of the hyperellipsoid, form
the vector from the reference point to the intersection, zs = zρ−zr, as with the
three dimensional case. To confirm an intersection, this vector and the pointing
vector must be collinear (once again, to within some tolerance).

ztszp̂

||zs|| ||zp̂||
= 1

However, it is necessary to validate which intersection point has been com-
puted. In three dimensions, this can be accomplished through visual inspection
of a surface plot. In higher dimensions, the quadratic surface definition Eqn. (20)
is once again employed. First, increase the length of zs by a differential amount
(zs+) and compute a displaced intersection point

zρ+ = zr + zs+

This vector should be within the hyperellipsoid since zs+ penetrates the surface:

ztρ+M
−1zρ+ < 1

Next, decrease the length of zs by a differential amount, and repeat the test,
verifying

ztρ−M
−1zρ− > 1

because zs− falls short of the surface. If both tests pass, then zρ is indeed the
first intersection, and not the point on the “backside” of the surface.

Verifying a tangent point once again begins by ensuring it is on the surface of
the hyperellipsoid. Next, as with the three dimensional problem, confirm zs is a
linear combination of zr and zp̂. Finally, recall that a vector tangent to a convex
surface will have a single intersection. Perform the same tests against Eqn. (20)
as with the intersection validation, except now both values are expected to be
external to the surface:

ztρ+M
−1zρ+ > 1

ztρ−M
−1zρ− > 1

Neither the lengthened nor shortened forms of zs should fall within the surface
as that would indicate more than one point of intersection.

14

10 Justification

Three affine transformations, and their inverses, are applied to solve the hyper-
ellipsoid intersection and tangent point problems. Two of the affine transforma-
tions are orthonormal—nothing more than a change of Cartesian basis vectors.
The transformation converting the hyperellipsoid to a unit n-sphere scales along
the principal axes, motivating review of key affine transformation properties:

• An affine transformation is invertible. Without the ability to transform
back to the original Cartesian system, this method would be of little use.

• The affine transformation is linear—lacking curvature, the metric tensor
of the resulting system is constant across all space. A line maps to another
line.

• Application of an affine transformation A to a hyperellipsoid is another
hyperellipsoid. A transformation AMAt to a symmetric positive definite
matrix M remains a symmetric positive definite matrix with n eigenvalues
as semiaxis lengths and n corresponding distinct and orthogonal eigenvec-
tors as principal axes.

• Collinearity is preserved through an affine transformation. Two lines that
are collinear, or parallel, will remain so after the transformation is applied
[2, p. 260].

• If f : C → A is a function representing the application of an affine trans-
formation, then f is onto, one-to-one, and the metric spaces (C, dC) and
(A, dA) preserve distance. The Cartesian and affine spaces, with their
associated metric tensors, are metrically equivalent [6, pp. 60–62]. The
distance between points before and after transformation remains invari-
ant.

Consider the quadratic surface constraint, Eqn. (20), subject to an affine
transformation A:

(Azρ)
t
(AMAt)

−1
Azρ =

ztρA
t (At)

−1
M−1A−1Azρ =

ztρM
−1zρ = 1

An intersection or tangent point resolved in one reference frame remains on the
surface of the hyperellipsoid after an affine transformation.

The constant nature of the transformation across space results in a tangent
point, realized by a line passing through the reference point and having a sin-

gle common point with the hyperellipsoid surface, remaining a tangent point.
Further consider two lines parallel to a line tangent to a surface, offset by a
differential distance in opposite directions, not in the plane tangent to the sur-
face. The differential displacement results in one line that does not intersect the

15

surface, and the other intersecting at two points—one line misses the surface
while the other passes through it. An affine transformation results in all three
lines, offset by infinitesimal amounts, remaining parallel. The two offset lines
continue to miss and double intersect the surface. The line between them, the
transition from two to zero intersections, must then continue to have a single
intersection with the surface.

Finally, the relationship between the intersection or tangent point zρ to the
linear combination of the reference point location zr and a scaled unit pointing
vector ẑp, with the application of an affine transformation is

zρ = zr + sẑp

Azρ = A(zr + sẑp)

Therefore, the distance from the reference point also remains invariant (when
measured with each reference frame’s associated metric tensor):

zρ − zr = sẑp

A(zρ − zr) = Asẑp

16

A QR Decomposition

The n-dimensional cross product was utilized to generate an [n×n] orthonormal
transformation essentially triangularizing an [n×2] matrix composed of the po-
sition and pointing vectors. Although this process is analogous to that of the
3-dimensional scenario, full QR decomposition through Householder transfor-
mations is more suitable for this purpose. Only two reflections are required to
form an [n×n] orthonormal matrix isolating the position and pointing vectors
in the first two dimensions of an n-dimensional Cartesian reference frame. This
method is significantly more computationally efficient than direct implementa-
tion of successive cross product operations. Bierman [1, pp. 59–63] introduces
the Householder transformation as a method of matrix triangularization. Tre-
fethen [7, pp. 69–73] further explores applications and numerical properties of
such transformations.

The full QR decomposition of an [n×m] matrix A,

Q1Q2 . . .QnR = A

QR = A

results in an [n×n] orthonormal matrix Q and [m×m] upper triangular matrix
R, such that

R = QtA

Each Qi is an [n×n] orthonormal matrix composed of an [(i−1)×(i−1)] identity
matrix in the upper diagonal block, and an [(n− i− 1)×(n− i− 1)] Householder
transformation in the lower diagonal block. Householder matrices are full rank
(|H| 6= 0), symmetric (H = Ht), idempotent (H2 = I), and therefore orthonormal
transformations that reflect a point relative to a plane. Defining the Householder
transformation by v, a vector normal to the reflecting plane,

H = I− 2
vvt

vtv

The position vector zs
r/o of §4 is used to define the plane reflecting itself into

the first Cartesian basis vector î.

z = zsr/o

v1 = z+ sign (z1) ||z|| î

Figure 3 illustrates the geometry. The plane normal to v1 is depicted by the
centerline ζ. For z located in the first quadrant, zî is added to z to maximize
numerical stability by choosing a reflector that moves z as far away as possible
[7, pp. 72–73] to zr. Subtracting zî to locate v1 would still generate a valid
reflector. For this case, ζ would be v1 and vice versa. The first transformation,
Q1, is equal to the Householder reflection:

Q1 = H1

= I− 2
v1v

t
1

vt
1v1

17

Generating Q2 begins with the 2nd through nth elements of the transformed
pointing vector.

z =
(

Q1z
s
p/r

)

[2 : n]

v2 = z+ sign (z1) ||z|| î

Note z is reflected to î (now of dimension n − 1) as was done with the po-
sition vector. Now that the position vector is isolated, the n − 1 dimensional
transformation being formed only affects the pointing vector. The second trans-
formation is composed of the identity matrix (in this case, the scalar value 1),
and an [(n− 1)×(n− 1)] reflection:

Q2 =

[

1
H2

]

The orthonormal transformation isolating the intersection and tangent point
geometry can now be formed.

Tc
s = Qt

= (Q1Q2)
t

Algorithm 3 is included to illustrate full QR decomposition.

Algorithm 3 Using Householder transformations, decompose an [m×n] matrix
into the product of an orthonormal [m×m] Q and upper triangular [m×n] matrix
R such that A = QR. Loop over each column of A. The ith iteration modifies
rows i through m and columns i through n, allowing matrix A to be modified
in place.

1: procedure QR(Am×n)
2: E = Im×m

3: Q = Im×m

4: R = A
5: for i = 1 : n do ⊲ Note dynamic sizing of x, v, û, H
6: x = A [i : m] [i]
7: v = x+ sign (x [1]) ||x||E [i : m] [i]
8: û = v/ ||v||
9: H = E [i : m] [i : m]− 2ûût

10: R [i : m] [i : n] = HR [i : m] [i : n]

11: Q = Q

[

I(i−1)×(i−1)

H

]

12: end for

13: return Q, R
14: end procedure

18

Figure 3: Householder Reflection

B 3D Tangent Point Example

Figure 4 illustrates the geometry of a three dimensional tangent point example.
The plane formed by the position vector (blue) and the pointing vector (black)
defines an ellipse intersecting the ellipsoid. Following an affine transformation
converting the ellipsoid to a unit sphere (Fig. 5), the intersecting ellipse becomes
a unit circle. The final transformation (Fig. 6) isolates the position, pointing
vector, and unit circle, within a two dimensional reference frame.

C Hyperellipsoid Visualization in 3D

Depicting ellipsoids of greater than three dimensions within only two proved to
be beyond reach of the author. However, n− 2 unique three dimensional slices
of an n-dimensional geometry can be plotted in 2D through row permutations
of Tc

s (§4). Figure 7 illustrates both the tangent and intersection (red) to a nine
dimensional hyperellipsoid. All 7 ellipsoids share the same two dimensional el-
lipse (highlighted in purple). The intersection and tangent points, along with
the position and pointing vectors, all retain the same coordinates and compo-
nents within the x-y (Fig. 8) plane that has been isolated as the dimensions of
Tc

s are permuted.

19

Figure 4: Ellipse Tangent Point Geometry in Cartesian Space

Figure 5: Unit Sphere Tangent Geometry Following an Affine Transformation

20

-0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

X

Y

Figure 6: Unit Circle Tangent Geometry

Figure 7: 9D Tangent and Intersection, 3D Slices

21

Figure 8: 9D Tangent and Intersection, 2D Slice

References

[1] G. J. Bierman, Factorization Methods for Discrete Sequential Estimation,
Dover Publications, Inc., Mineola, NY, 1977.

[2] O. Byer, F. Lazebnik, and D. L. Smeltzer, Methods for Euclidean

Geometry, Mathematical Association of America, Inc., 2010.

[3] P. Grinfeld, Introduction to Tensor Analysis and the Calculus of Moving

Surfaces, Springer, New York, NY, 2013.

[4] I. Gura and R. Gersten, On analysis of n-dimensional normal probabil-

ities, Tech. Rep. TR-0066(5129-01)-2, Aerospace Corporation, 1970.

[5] C. Lanczos, Applied Analysis, Dover Publications, Inc., New York, NY,
1988.

[6] B. Mendelson, Introduction to Topology: Third Edition, Dover Books on
Mathematics, Dover Publications, New York, NY, 2012.

[7] L. N. Trefethen and D. Bau III, Numerical Linear Algebra, SIAM,
Philadelphia, PA, 1997.

22

