
Quaternion to DCM and Back Again

Kurt A. Motekew

April 23, 2014

Abstract

Given the definition of a quaternion reference frame transformation,

the conversion from a unit quaternion to a direction cosine matrix and

back is derived. The reader is expected to be familiar with basic quater-

nion properties and algebra. A method of selecting the initial quaternion

element to solve for utilizing the quaternion norm condition to guarantee

numerical stability is presented and compared to Shepperd’s method of

inspecting components of the transformation matrix.

1 Background Information

The conversion from a quaternion to a direction cosine matrix (DCM) is straight-
forward, easy to comprehend, and readily available in literature. The reverse
process is, however, more complicated and typically given only a terse descrip-
tion. The derivation presented here is based on the singularity free algorithm
originally developed by Shepperd [2] and reviewed by Shuster [3][4] along with
hints presented by Stevens and Lewis [5, p. 42].

There are many standards to choose from when representing quaternions. In
this text, the notation closely follows the excellent introduction to quaternions
and their applications by Kuipers [1]. Quaternions are denoted as:

q = qs + q = qs + qi + qj + qk

where the scalar is qs. Only the subset of quaternions associated with rotation
sequences are considered, imposing the quaternion norm condition:

q2

s + q2

i + q2

j + q2

k = 1 (1)

Vectors are in bold:
r = [ri rj rk]

t

Reference frame transformations (vs. vector rotations in a fixed coordinate sys-
tem) are

q∗rq (2)

such that q∗ is the complex conjugate of the quaternion. Quaternion rotation
sequences are carried out from left to right. Other references, such as Shuster
[3, pp. 464-467], employ the opposite convention as typically used for matrix
algebra while reversing the order of Eqn. (2) .

1



2 Quaternion to DCM

Consider the reference frame transformation of a position vector r through the
quaternion frame rotation [1, p. 126]:

q∗rq = (2q2

s − 1)r + 2(r · q)q + 2qs(r × q) (3)

To derive the transformation from a quaternion to a rotation matrix, begin by
expanding Eqn. (3)

q∗rq = (2q2

s − 1)





ri

rj

rk



 + 2(riqi + rjqj + rkqk)





qi

qj

qk



 + 2qs





rjqk − rkqj

rkqi − riqk

riqj − rjqi





=





2riq
2

s − ri + 2riq
2

i + 2rjqiqj + 2rkqiqk + 2rjqsqk − 2rkqsqj

2rjq
2

s − rj + 2riqiqj + 2rjq
2

j + 2rkqjqk + 2rkqsqi − 2riqsqk

2rkq2

s − rk + 2riqiqk + 2rjqjqk + 2rkq2

k + 2riqsqj − 2rjqsqi





and factoring:

q∗rq =





ri

(

2q2

s − 1 + 2q2

i

)

+ 2rj (qiqj + qsqk) + 2rk (qiqk − qsqj)
2ri (qiqj − qsqk) + rj

(

2q2

s − 1 + 2q2

j

)

+ 2rk (qjqk + qsqi)
2ri (qiqk + qsqj) + 2rj (qjqk − qsqi) + rk

(

2q2

s − 1 + 2q2

k

)





The vector r can now be separated,

q∗rq =





2q2

s − 1 + 2q2

i 2 (qiqj + qsqk) 2 (qiqk − qsqj)
2 (qiqj − qsqk) 2q2

s − 1 + 2q2

j 2 (qjqk + qsqi)
2 (qiqk + qsqj) 2 (qjqk − qsqi) 2q2

s − 1 + 2q2

k









ri

rj

rk





= Cr

Substituting the quaternion norm condition (1) into the diagonal components
of C, the DCM derived from the elements of the quaternion q can be rewritten
into a form that will be more useful in §3:

C =





q2

s + q2

i − q2

j − q2

k 2 (qiqj + qsqk) 2 (qiqk − qsqj)
2 (qiqj − qsqk) q2

s − q2

i + q2

j − q2

k 2 (qjqk + qsqi)
2 (qiqk + qsqj) 2 (qjqk − qsqi) q2

s − q2

i − q2

j + q2

k



 (4)

A reference frame transformation may now be computed via

r2 = Cr1

instead of
r2 = q∗r1q

2



3 DCM to Quaternion

Extracting the equivalent quaternion from a DCM is not as direct. Keeping in
mind the components of Eqn. (4), cij , are all known values, quaternion elements
can be solved for with some care.

C =





c11 c12 c13

c21 c22 c23

c31 c32 c33





When added together, the diagonal components of C can be used to determine
the square of the scalar quaternion element,

c11 + c22 + c33 = q2

s + q2

i − q2

j − q2

k + q2

s − q2

i + q2

j − q2

k + q2

s − q2

i − q2

j + q2

k

= 3q2

s − q2

i − q2

j − q2

k

= 3q2

s − (q2

i + q2

j + q2

k)

= 3q2

s − (1 − q2

s)

= 4q2

s − 1

or,

4q2

s = 1 + c11 + c22 + c33

= 1 + Tr(C)

where Tr(·) is the matrix trace operation. The diagonal components can be
added and subtracted in eight different combinations. However, only four unique
equations result after simplification:

4q2

s = 1 + c11 + c22 + c33 (5)

4q2

i = 1 + c11 − c22 − c33 (6)

4q2

j = 1 − c11 + c22 − c33 (7)

4q2

k = 1 − c11 − c22 + c33 (8)

Isolating quaternion elements with Eqns. (5) through (8) provides only value

magnitudes, not signs (e.g.,
√

a2 = ±a). The solution to this problem begins
by recalling q performs the same transformation as −q. Negating the scalar
component changes the direction of the rotation while negating the complex
components reverses the direction of the axis of rotation — two quaternions
exist for every unique rotation matrix. Because of this, any of Eqns. (5) through
(8) may be used to solve for the initial quaternion element with an arbitrarily
chosen sign.

Once an initial quaternion element is determined, the remaining, along
with appropriate signs, may be solved for using equations formed from the
off-diagonal components of (4). Inspection (or trial by error) reveals terms cij

may be combined with cji (i 6= j) such that each resulting equation contains

3



only two quaternion elements. A total of six unique equations may be formed
using this method:

4qsqi = c23 − c32 (9)

4qsqj = c31 − c13 (10)

4qsqk = c12 − c21 (11)

4qiqj = c12 + c21 (12)

4qiqk = c31 + c13 (13)

4qjqk = c23 + c32 (14)

Given an initial quaternion element, three suitable equations from (9) through
(14) are chosen to solve for the remaining unknowns.

Solving for the scalar element first using Eqn. (5) requires Eqns. (9), (10),
and (11).

qs = +

√

1 + c11 + c22 + c33

4
(15)

qi =
c23 − c32

4qs

qj =
c31 − c13

4qs

qk =
c12 − c21

4qs

The first complex quaternion element, via Eqn. (6), is used in conjunction with
Eqns. (9), (12), and (13).

qi = +

√

1 + c11 − c22 − c33

4
(16)

qs =
c23 − c32

4qi

qj =
c12 + c21

4qi

qk =
c31 + c13

4qi

The solutions beginning with the second

qj = +

√

1 − c11 + c22 − c33

4
(17)

qs =
c31 − c13

4qj

qi =
c12 + c21

4qj

qk =
c23 + c32

4qj

4



and third

qk = +

√

1 − c11 − c22 + c33

4
(18)

qs =
c12 − c21

4qk

qi =
c31 + c13

4qk

qj =
c23 + c32

4qk

complex components are similar. Each of these equation sets suffer numerical
instability as the first element to be solved approaches zero in magnitude. For
example, a rotation angle of π radians results in qs = 0 using equation set (15).

Choosing the largest result from equations (5) through (8) is a direct method
of determining which quaternion element is the furthest from zero in magnitude
and therefore a good candidate as a divisor in subsequent operations. Shepperd
[2] shows an equivalent (yet more efficient) method is to determine the largest
of the set

{Tr(C), c11, c22, c33}
and choose the quaternion element that would be maximized as the one to
solve first (Algorithm 1). Smaller positive diagonal components of C will be

Algorithm 1 Shepperd’s Selection Algorithm

if (Tr(C) > c11) and (Tr(C) > c22) and (Tr(C) > c33) then

Use Eqn. Set (15)
else if (c11 > c22) and (c11 > c33) then

Use Eqn. Set (16)
else if (c22 > c33) then

Use Eqn. Set (17)
else

Use Eqn. Set (18)
end if

subtracted and negative values will ultimately be added when forming the term
under the radical with this method.

A technical report written by id Software, Inc. [6] simplifies the first set of
comparisons by deciding to solve for the scalar term if the trace of the DCM is
greater than zero. Inspection of Eqn. (5) reveals the scalar component will then
be equal to at least 1/2:

4q2

s = 1 + 0 → qs =
1

2

If the first test fails, Shepperd’s selection method is resumed.

5



An alternative method introduced here involves recognizing the quaternion
norm condition (1) requires at least one quaternion element to be 1/2 or greater
in magnitude [4, p. 547]. Therefore, a quaternion element q⋆,

q⋆ ≥ 1

2

results in,
4q2

⋆ ≥ 1

This allows the full quaternion to be computed once the first (right hand side)
of equations (5) through (8) evaluates to a value κ such that

ǫ < κ ≤ 1

where ǫ is sufficiently large to not cause numerical instability. Algorithm 2
demonstrates making use of a language such as C or Java where variable as-
signment while evaluating logical expressions is permitted (if κ = 1, then the ≥
comparisons should be used instead of >).

Algorithm 2 Norm Constraint Selection Algorithm

κ = 0.25
if (tmp = 1 + c11 + c22 + c33) > κ then

qs =
√

tmp/4
Complete q with remainder of Eqn. Set (15)

else if (tmp = 1 + c11 − c22 − c33) > κ then

qi =
√

tmp/4
Complete q with remainder of Eqn. Set (16)

else if (tmp = 1 − c11 + c22 − c33) > κ then

qj =
√

tmp/4
Complete q with remainder of Eqn. Set (17)

else if (tmp = 1 − c11 − c22 + c33) > κ then

qk =
√

tmp/4
Complete q with remainder of Eqn. Set (18)

else

Throw an error!
end if

The first comparison in Algorithm 2 is on par with Algorithm 1 — although
the decision process has one additional operation, there are fewer logical eval-
uations along with simplified code. Nothing is lost if the first comparison fails
and the second passes, although the remaining comparisons are computation-
ally more expensive than those of Algorithm 1. Table 1 compares the frequency
with which Eqn. sets (15) through (18) are selected when using Algorithm 1 vs.
Alg. 2 with two reasonable values of κ. Choosing κ = 1, a conservative value,
results in approximately 84% (67% + 17%) of all conversions occurring within
the first two comparisons. If κ is lowered to 1/4, requiring the divisor quater-
nion element to be at least 1/4 in magnitude, then 97% (84% + 13%) of the

6



Selected Divisor Alg. 1 Alg. 2 Alg. 2
κ = 1 κ = 1/4

Test 1 → qs 58% 67% 84%
Test 2 → qi 14% 17% 13%
Test 3 → qj 14% 11% 3%
Test 4 → qk 14% 5% <1%

Table 1: Execution trends for equation sets (15) through (18) are shown for
selection Algorithms 1 and 2. Statistics were accumulated by creating two mil-
lion randomly generated rotation matrices and tracking which of the quaternion
elements would be selected as the divisor by both algorithms. The rotation ma-
trices were produced by first creating a quaternion from an angle and rotation
axis and then converting the quaternion to a DCM (§2). A uniform distribution,
U(−1, 1), was used to create each element of the rotation axis before normal-
ization. Half of the rotation angles were created using U(−π, π) while the other
half used U(0, 2π).

conversions will pass either the first or second of Algorithm 2 tests. Note that
for simulations not involving large rotations (such as attitude measured relative
to some form of local level reference frame), the first test will always pass given
the total angle of rotation must exceed 120◦ even when κ = 1.

Concluding Remarks

Both the derivation and implementation of the quaternion to DCM conver-
sion are simple processes. The quaternion reference frame operation directly
leads to a single formula for each DCM component given quaternion elements.
The formulas relating DCM components to quaternion elements provide more
equations than unknowns for the reverse procedure. Proper selection of these
equations eliminates numerical instability when converting a DCM to a quater-
nion given a proper transformation matrix. Programming languages allowing
variable assignment while evaluating logical expressions may use the quaternion
norm constraint to simplify coding of this selection process without impacting
numerical stability or performance.

7



References

[1] J. B. Kuipers, Quaternions and Rotation Sequences: A Primer with Appli-
cations to Orbits, Aerospace and Virtual Reality, Princeton University Press,
Princeton, NJ, 1999.

[2] S. W. Shepperd, Quaternion from Rotation Matrix, Journal of Guidance
and Control, 1 (1978), pp. 223–224.

[3] M. D. Shuster, A Survey of Attitude Representations, The Journal of the
Astronautical Sciences, 41 (1993), pp. 439–517.

[4] M. D. Shuster and G. A. Natanson, Quaternion Computation from
a Geometric Point of View, The Journal of the Astronautical Sciences, 41
(1993), pp. 545–556.

[5] B. L. Stevens and F. L. Lewis, Aircraft Control and Simulation, John
Wiley & Sons, Inc., New York, 1992.

[6] J. M. P. van Waveren, From Quaternion to Matrix and Back,
tech. rep., Id Software, Inc., 2005.

8


