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Abstract

A great deal of confusion revolves around the earth’s gravitational pa-

rameter, equatorial radius, and angular velocity. Experience with source

code from numerous high, medium, and low fidelity astrodynamics related

modeling tools clearly demonstrates this quandary. Confusion is under-

standable given past approaches assumed only a single value for each

constant. In addition, references that precisely define these values are of-

ten difficult to interpret. While the details covered here may be pedantic

in nature, the devil is quite often in the details when it comes to modeling

astrodynamics related problems.

1 Overview

The 2nd edition of the WGS 84 standard [2] defines the modern oblate spheroid
semimajor axis used to convert between Cartesian and geodetic coordinates.
This edition also describes the concept of a nominal mean earth angular velocity
along with two additional definitions intended for high precision modeling and
simulation. One version is intended to compensate for the Coriolis effect (and
centripetal acceleration) when converting velocity (and acceleration) vectors
between earth centered earth fixed (ECEF) and earth centered inertial (ECI)
reference frames. Another version of the angular velocity is used to compute
the earth’s angular rotation relative to a precessing reference frame. This rate is
used when the sidereal time at an epoch, which is relative to an equinox-based
ECI reference frame, is given and a new value is desired at a different time.

The 3rd edition of the WGS 84 standard [3] adopts the EGM96 gravity
model while continuing to use the previous WGS 84 ellipsoid definition. This
update introduces the need for two semimajor axis values defining the earth.
One is used for Cartesian/geodetic coordinate conversions while the other is
used as the scaling factor when evaluating the EGM96 gravity model.

The International Terrestrial Reference Frame (ITRF) is defined in the IERS
Conventions (2010), a.k.a. Technical Note 36 [4], or simply TN 36. This is the
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modern ECEF reference frame used for precision astrodynamics work. It is
located relative to inertial space as a Cartesian coordinate system. TN 36 also
specifies an oblate spheroid model to be used for conversions between ITRF
Cartesian and geodetic coordinates. While the equatorial radius of the earth is
the same as the WGS 84 model, the flattening factor differs slightly.

2 Transmission of Coordinates

The well-known computer scientist Dr. Tanenbaum penned [6, p. 254], “The
nice thing about standards is that you have so many to choose from.” The field
of astrodynamics eagerly illustrates this concept. With respect to ECI reference
frames, one can choose from the classic true equator mean equinox (TEME), true
equator true equinox (TETE), J2000, and modern International Astronomical
Union (IAU) Geocentric Celestial Reference Frame (GCRF) definitions, just to
name a few. Geodetic reference frames are at least essentially limited to either
the WGS 84 standard or the IAU adopted GRS80 model.

As described in the overview §1, the modern Cartesian ECEF reference frame
is the ITRF. For all practical purposes, no other Cartesian ECEF reference frame
is defined. Instead, differences from the ITRF exist due to an application’s omis-
sions from the full coordinate transformation theory (e.g., not including polar
motion, not modeling seasonal variations when interpolating earth orientation
parameters (EOP), etc.) or simplifications to models that indirectly affect real-
ization of the ITRF (e.g., a spherical earth model where the difference between
the geocentric and geodetic latitudes is ignored). In addition, the“differences
between WGS 84 and ITRF are in the centimeter range worldwide.” [3, p. 7-1]

To eliminate unnecessary errors caused by differences in reference frame and
coordinate transformation theories, it is recommended state vectors (position
and velocity) are always communicated via Cartesian ECEF coordinates. Such
coordinates allow for the state vectors to to be represented by the greatest level
of fidelity supported by the source application algorithms. The use of ECI or
geodetic coordinates when transferring state vectors may introduce errors that
could otherwise easily be avoided.

Consider a high precision application making use of the GCRF when propa-
gating ephemeris while incorporating the full modern reduction theories (ECEF
to ECI coordinate transformations) defined by the IAU. If state vectors are re-
layed via ECEF coordinates, then a lower fidelity application can convert these
vectors to an internal computational reference frame where the equations of
motion can be propagated in accordance with the application’s inherent level
of fidelity. In contrast, if state vectors are transmitted via the modern GCRF
definition and the recipient application only understands a simplified (but very
useful) TEME reference frame, a significant error will immediately be intro-
duced. Accurate transformations to an ECEF or another ECI reference frame
will be impossible because the less sophisticated application will have no concept
of what the GCRF reference frame is.
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3 Cartesian ECEF vs. Geodetic Coordinates

As of this writing, the 3rd edition of the WGS 84 standard is typically consid-
ered to be the authoritative model for transformations between Cartesian and
geodetic (latitude, longitude, altitude) coordinates. It is the DoD standard, in-
cluding its adoption by the Navstar Global Positioning System (GPS) [1]. Table
3.1 of the WGS 84 standard [3, p. 3-5] defines the earth’s semimajor axis and
the reciprocal of flattening:

a = 6378137.0 meters

1/f = 298.257223563

TN 36 references the GRS80 ellipsoid model for conversions between ECEF
Cartesian and “geographical coordinates” [4, §4.2.6]. This model adopts the
same semimajor axis value while employing an ellipsoid inverse flattening of
1/f = 298.257222101. Unlike the GRS80 model, the WGS 84 flattening is
derived from a truncated form of “the normalized second degree zonal harmonic
gravitational coefficient. . . ” [3, p. 7-2] This results in a maximum discrepancy
of just over a tenth of a millimeter between the two definitions when converting
between geodetic and Cartesian coordinates on the surface of the earth.

Keep in mind, the ellipsoid definition is just a mathematical construct. It
is an agreed upon standard used to define latitude and longitude given ECEF
Cartesian coordinates (just as the location of the north pole is defined by con-
vention and does not align with the true spin axis of the earth, which is always
changing). The concept of a true earth radius and flattening are irrelevant as
long as these model parameters are representative of an ellipsoidal approxima-
tion of the earth and are used consistently.

4 Gravitational Model

The EGM96 and EGM2008 terrestrial time (TT) compatible gravitational pa-
rameter [4, p. 79] is

GM⊕ = 398600.4415
km3

sec2

It is often confused with the geocentric coordinate time (TCG) compatible value
of 398600.4418 km3/sec2. This is most likely because Table 1.1 of TN 36 [4,
p. 18] lists the TCG value while the fine print specifies the TT version. To
aid in clarifying which value should be used when evaluating either gravita-
tional model, consult the EGM2008 README FIRST.pdf document available
at the National Geospatial-Intelligence Agency (NGA) website or the EGM96
readme.egm96 text file available via NASA’s Crustal Dynamics Data Informa-
tion System (CDDIS) ftp server. These sites contain the EGM2008 and EGM96
gravitational models along with documentation (somewhat) clearly explaining
their use.

TT is a time scale realized at sea level on the earth. In contrast, TCG
is realized such that it is not affected by relativistic gravitational effects—i.e.,
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a location infinitely far from the earth. Even though TCG is intended to be
used as the time scale for modeling the motion of celestial bodies, TT is used
in practice. As explained by Vallado [7, p. 194], TCG may be inconvenient
because it “is a coordinate time representing the independent argument of the
equations of motion of bodies in its frame and will not be ordinarily kept by
any physically real clock” while TT is more convenient since “it is realized via
TAI and UTC.” Earth precession and nutation formulas illustrate the use of
TT as the independent parameter. Algorithms predicting the orbits of the sun
and moon relative to the earth are also typically developed as a function of TT.

The gravitational scaling radius associated with the EGM96 and EGM2008
models is denoted in the readme documentation provided with each model and
in the TN 36 fine print [4, p. 79]. Note that this differs from the semimajor axis
value used to define the earth’s oblate spheroid model:

R⊕ = 6378.1363 km

The gravitational parameter and the associated scaling factor are the primary
values defining modern gravitational potential models. There is little reason
to include high order spherical harmonics if the wrong first order modeling
parameters are employed.

5 Angular Velocity

The WGS 84 and GRS80 ellipsoid definitions include a nominal mean angular
velocity of the earth with respect to inertial space [3, p. 3-4] [4, p. 19.]:

ω⊕ = 7292115× 10−11
rad

sec

High fidelity applications must employ a more precise definition of the earth’s
angular velocity. A distinction needs to be made between the angular velocity
of the earth relative to inertial space and the angular velocity relative to a
precessing reference frame.

When transforming velocity between ECEF and ECI reference frames, the
Coriolis effect must be taken into account. Centripetal acceleration must also
be incorporated when transforming acceleration. Both corrections involve cross
products between the satellite’s position vector and the earth’s angular velocity
vector. To convert the reference frame in which the velocity and acceleration
derivatives are taken, the angular velocity of the earth w.r.t. inertial space,
7292115× 10−11 rad/sec, or the higher fidelity [7, p. 222]

ω⊕ = 7.292115146706979× 10−5

(

1−
LOD

86400

)

rad

sec

should be used, where LOD is the EOP value Length of Day. Seidelmann [5,
p. 51] presents this formula to 11 significant figures in the 1992 version of the
Explanatory Supplement to the Astronomical Almanac. LOD is [7, p. 222] “the
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instantaneous rate of change (in seconds) of UT1 with respect to a uniform time
scale (UTC or TAI).” Inspection of the above equation and taking note that
the maximum magnitude of LOD is on the order of 4 milliseconds, setting LOD
to zero when it is unknown results in a more accurate approximation of ω⊕ than
using the truncated version 7292115× 10−11 rad/sec.

Sidereal time is the earth rotation angle measured relative to an equinox-
based ECI reference frame. Such a reference frame is realized by the slowly
drifting intersection of the earth’s equator and the ecliptic, which form the ECI
x-axis. Vallado [7, p. 207] explains the “. . .motion of the ecliptic plane due to
precession causes the equinox to move along [in the plane of] the equator. . . ”,
which affects the angular velocity of the earth relative to this precessing frame.
This comes into play when computing the sidereal time relative to a known
value at some epoch. For example,

θGMST = θGMST0
+ ω⊕prec

∆t

where θGMST0
is a known Greenwich mean sidereal time (GMST) at some epoch

and ∆t is the change in time since that epoch. The formula for computing this
form of the earth’s angular velocity is [7, p. 180] [5, p. 52],

ω⊕prec
= 1.002737909350795 + 5.9006× 10−11TUT1 − 5.9× 10−15T 2

UT1

rev

day

where TUT1 is the number of Julian centuries in UT1,

TUT1 =
JDUT1 − 2, 451, 545UT1

36, 525

and one rev per day is 2π radians per 86400 seconds. This polynomial is derived
by differentiation of sidereal time θGMST [5, p. 51]. Beware of software where
the earth rotation rate has been set to the radians per second equivalent of the
constant in the above equation, 7.292115855306587× 10−5 rad/sec.
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